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Abstract.In this manuscript, we extend t&*-calculus by suggesting theorems
analogous to the Green'’s and the Stokes’ ones. Utilizingthiecalculus, the classical
multipole moments are generalized to fractal distributions. In addition, thergkzed
model for the Bohr’s energy loss involving heavy charged particleséng
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1. INTRODUCTION

Fractals can be observed in several physical phenomena [1]. Tofshathls,
mathematicians have developed several methods and techniques [2p8ticy,
the applications of fractals were studied by Mandelbrot [4]. Recently, thade
analogous to the ordinary calculus has been developed on fractalsalitutus was
called F'*-calculus [5-9]. F“-calculus is a successful theory proposed to solve the
nonlinearity problem of the theories of anomalous diffusion and of othgsipal
phenomena [10-33].

The applicability and simplicity of"*-calculus has motivated us to expand the
application area of this calculus to the fractal physical systems. Firstlyy tisa
F“-calculus, we prove divergence, Green’s, and Stokes’ theorarfratals. In ad-
dition, we define fractal forms and then we usg-calculus to expand the classical
multipole moments for fractal distributions [34—36]. Finally, we use the mastex-eq
tion to the physical process of passing of fast heavy particle throughratieg) the
local fractional derivative. We present the classical backgroumeéogy straggling
phenomenon and explain the value of this study and highlight the shortcowfings
the application of the classical theory energy straggling. When a beaastdi¢avy
charged particles passes through continuum matter the particles losg stoettas-
tically [37, 38]. Suppose that a beam of heavy charged particles withikierergy
T passes through a thickneds: of an absorber andl(7', x)dT is the fraction of the
particles with energy betweéhand1 + d1' on a position: through the absorber. It
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is obvious thatf (T, x) satisfies the following master equation:

W - _/OOOQ(T, e)f(T,:v)d€+/OOOQ(TJre,e)f(TJrE’f’f)dfa (1)

whereq(T,¢) is the probability that a particle will lose an amounteof € + de in
traversing a distancAx in the absorberf (T, x) is a Gaussian distribution for thick
absorbers [37, 39], and for thin layef$T,z) has heavy tail [38, 40-43]. Classi-
cal studies of transporting of heavy charged particles deal with comtinmaterials
and differentiable transition probability functiong;7’,¢). Consequently, there is a
knowledge gap in the field of study of fractal materials and more genegedgitran-
sition probabilities, for example, nowhere differentiable functions anctdtdunc-
tions. To study more general energy transition probabilities, we expanudister
eqguation with local fractional derivative.

This paper is divided into six Sections. The next Section is devoted to intro-
duce the mathematical tools that we use in this manuscript. Section 3 is about the
expansion of Green’s, Stokes’, and the divergence theorems actaélfmultipole
moments. In Sec. 4 the application of the local fractional derivative to leacthe
straggling function in fractal structures is developed. The 5th Sectiongbscex-
tension of classical Bohr’s energy loss for fractals. Finally we pressammary of
our conclusions.

2. BASIC TOOLS

In this Section, we give an introduction to the mathematical tools used in this
paper.

2.1. ALOCAL FRACTIONAL DERIVATIVE

The local fractionak-order derivative of functiorf is defined as

- d?[f(z) = f(y)]
D* = lim —————=~
T = ey
where the right hand side is the Riemann-Liouville fractional derivativechvis
defined by [7]

“f@) 1 d / @)
[dz—a)*  TA-a)dz J, (@-y)°
This kind of fractional derivative has many successful applications ekam-
ple, it is a local operator and its function on a constant quantity results[Zprit
is also proved that there exits a quantitative connection between the boxsitimen

of nowhere differentiable functions and the existence of the order af foactional

0<a<l, 2

dy 0<a<l. 3)
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derivative [7]. Furthermore, the local fractional derivative appess the coefficient
of the power with fractional exponent i.e.

N
F™ (y) D f(y)
fla) = A"+ (£A)® + Ra(y, A), 4)
;) T(n+1)" ' T(a+1) 4

whereR,(y,A) is the remainder and = 2 — y [8].

2.2. FRACTAL CALCULUS ON A SUBSET OF R

This Section contains an introductionf'-calculus. We choose the important
definitions and theorems &f“-calculus, and for more details, we refer the readers to
the references mentioned in the introduction Section. In this paper, wamagbat
F represents all fractal structures with dimensiarin addition, the notation of this
calculus can be seenin [5, 6].

Definition 2.1 The basis of"“- calculus is on the integral staircase functicdff;(z),
of order« for a fractal setF’, which is given as follows:
o | P (Fax),  ifr>a
Sr(w) = { —~%(F,z,a), otherwise, )
wherey® is the mass function of the fractal s€f all o, z,a € R and0 < o < 1 [6].

Itis worth pointing that the two important propertiesff, the continuity and mono-
tonic increasing properties, are the essence of the definitioh% efderivative and
F*—integral on fractals.

Definition 2.2 Let F C R, f: R— Randx € F. A number is said to be the limit
of f through the points of’, or simply F-limit of f, asy — z, for anye there exists
0 > 0 such that

yeFly—z|<di=|f(y) -1l <e (6)
then it is denoted by
L= F—limy—.f(y), (7)
[6].
Now the definitions of"*-derivative andF“-integral of fractals are as follows:
Definition 2.3 If £ is ana-perfect set then the'“-derivative off at x is

T fy)—f(z) .
Defa) = I sy TEF ®)
0, otherwise,

[6].
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Definition 2.4 Let f be a fractal function. Lef be a closed interval. Then
M[f.F 1= sup f(x) ifFNI#2, 9)

zeFNI

=0 otherwise,
and similarly
F,I] = inf ifENT 1
mlf,FI= inf f() ifFNI#2, (10)

=0 otherwise,
[6].
Definition 2.5 Let S% be finite forz € [a,b]. Let P be a subdivision ofa,b] with

pointszg,...,x,. The upperF'* -sum and lowet"“-sum for the functiorf over the
subdivisionP are given, respectively, by

US[f, F, 1] = ZM FoF [z win]) (S (i) — Sg (i), (12)
and
n—1
LOVf,F I =Y mlf, F s, i) (Sp (i) — SE(22)), (12)
=0

[6].
Definition 2.6 Let I be such thatS¢ is finite on|a,b]. For f, a function onF’, the
lower F'*-integral is given by

/ f(z)dpx = sup LY[f,F,P], (13)

ab]

the upperF*-integral is given by

/ f(z)dpx = mf U“[f,F,P|, (24)

[ab

[6].
Definition 2.7 Let f be a fractal sett’, f is F**-integrable on[a, b] if

/ )z = / e (15)

and it will be denoted by
b
JR (16)

[6].
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Theorem 2.1 A functionh is a-integrable over|a,b] if and only if g = ¢[h] (g is
conjugate function ok) is Riemann integrable ovek = [S*(a), S*())]

b 5°(b)
/ h(z)d*z = / g(u)du. a7)
a Se(a)

Theorem 2.2 Let h be a function such that the image= ¢[h] of h is ordinary
differential onK. Then

dg(t = 5%(x))

(18)
forall z € F [6].
The stair function satisfies

ar® < S%(z) < bx?, (19)

wherea andb are constants [5, 6].

3. FRACTAL GREEN’S, STOKES’, AND THE DIVERGENCE THEOREMS

In this Section, we extend fundamental theorems of classical calculus for a
fractal set. We use these theorems in the next subsection. Firstly, Idinsebderior
derivative as follows [22];

d* =Y dyx; D%, (20)
=1
and, forn = 1 itis given by
d®f = Df, f(x)dp, (21)
wheref is a function on the fractal sét. The integration of Eq. (21) is as follows;
[ @ = [ Dif@ydza = 1)~ fla). (22)
F F
For three dimensions we have
d*f = D%, fdpx+ D, fdry + D, fdiz, (23)

or in another notation
d*f=Vef-dgr. (24)
Let us calculate the fractal surface integral on a fractal cbidth fractal boundaries

/S Fodpady+ fydoade+ fodzdy — /S f.d%a, (25)
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wheref = (f;, fy, f-) is a fractal vector filed on fractal space. Alon@xis on fractal
boundary surfaces df; and .S,

b pd b pd
[ ot [ pao= [ [ pevodta [ [ s ndzda,
1 2 (26)
wherea, b, c,d are the boundaries on which the fractal set is defined. By simplifica-
tion

b pd
[ [ o= flaw. Pl iy (27)
and using
!
| Dbt = )~ S ). (28)
and repeating the above calculationzoaxis andy axis, we obtain
/D%-fdav_/f-d%a, (29)
1% s

whereV is the fractal volume of fractal surfacgand it is called fractal version of
divergence theorem. Now let us prove the Green’s theorem

Mdgx+ Ndgy = / / [D§.,N — D% M| dyyds, (30)
as S

wheredS is the fractal boundary of fractal aréaand M, N are the functions on
fractal set. The righ thand side of Eq. (30) in a fractal square carritiemvas

b
//—D%de%yd%x:/ [M(:z,c)—M(x,d)] T, (31)
and the left hand side of the equation
?{Mdo‘ac:/Md%a:—l—/Md%a:,7 (32)
1 2

b a
:/ M(:U,c)d%er/ M(x,d)dgx,
a b

b
_ / [M(,¢) - M(x,d)] da,

where the indiced and2 are the line boundaries of square with interval$ at
y = ¢,y = d. By using the same method we can prove

de%y = //Dj’ind%yd%x. (33)
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Using the fractal Green’s theorem, in the similar way, we can prove the Stoke
theorem,

jgf-dar:/v%xf-daa. (34)

3.1. APPLICATION

With the new integral definition on fractals we propose the fractal integral
Maxwell equations. The classical Maxwell equations describe electticreagnetic
fields on continuous materials. So, they are not applicable on fractal niqtefie
suggest the classical Maxwell’s equations and their fractal forms bsifajlaws;

€0 7{ E-da= / pdV, (35)
s 1%
(Gauss'’ law),
?{ E‘dlz—a/B-da, (36)
08 ot Js
(Faraday’s law),
f B-da=0, (37)
s
(Gauss’ law of magnetic field),
f B'dlzuo/J'da+60uoa/E'da, (38)
a5 s ot Js
(Ampere’s law),
607{ E-d“‘a:/ pd™V, (39)
S 1%
(Fractal Gauss’ law),
7{ E.dalza/B'daa, (40)
oS ot Js
(Fractal Faraday’s law),
f{ B-d*a=0, (41)
S
(Fractal Gauss’ law of magnetic field),
f B~daI:u0/J-d°‘a+eo,u,oa/E-daa, (42)
05 s ot Js

(Fractal Ampere’s law).

Heredl is the vector along a linela is the vector arealV’ is the volume S is
the surfacegs is the boundary of surface. For classical and fractal electromagnetic
equations we refer to [21, 22, 44].
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The line integral of the magnetic fieBlalong a fractal closed curvk,is given
by
7{B d®l = pol, (43)
where | is given by
I= 27r/J(7“)rd°‘r. (44)

Here J(r) is the fractal cylindrically symmetric current density distribution arid
the radius of the coordinate. Then the left hand side of Eq. (43) becomes

f B-dl = 2raB(a). (45)
For J(r) = Jo, Eq. (44), Eq. (45), and Eq. (17), lead to
Blo)= [ BSErSEr) (46)
0

and using Eqg. (19) we conclude that
1
B(a) = Jo - (SF(a))* ~ a7 (47)

At this point we note that this result differs from the other fractal thedB86s36].

3.2. ELECTRIC QUADRUPLE EXPANSION FOR FRACTAL CHARGE DISTRUTION

The quadrupole terms for potential is given by
11 9 o
Vo= T d Fr P5(cos)p(r)d*V, (48)

by replacingPs(cos ) we have

11 9,3 o 1
=—— — 0—— a*v, 49
47T6a3 F/r (2COS 2>p(r) Y ( )
wheref is the angle betweemandr vectors
11 3 N
= 1o (9(3'7)2 —7%)p(r)d*V, (50)
and then
3
1 1 XX
Vo=—— — 51
2= o0 1}1:1 2 Qkls (51)

where X, are Cartesian’s coordinate afand the electric quadruple is defined by

QﬁC = /F[3a:la;k — T25kl]p(r)dav, (52)
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wherezx;, are coordinates of the vectarFor simplicity, we consider the more general
form of Q¢

Q% (e, 8,7) = / [az® + By® +~2°]p(r)d*V, (53)

F
then for fractal parallelepiped with volunte< z < A, 0<z < B,0<z < C we
have

1
Q% = 3 SFA)SEB)SH(C)[aSHA)* + BSF(B)* +4SF(C)],  (54)
whereQ® = ppS*(A)S*(B)S“(C) is the electric charge of the fractal distribution.

4. EXTENSION OF THE MASTER EQUATION

If the maximum energy loss in any single collision is small, then the right hand
side of Eq. (1) can be expanded as

—/Ooq(T,e)f(T,x)de+/Ooq(T—i—e,e)f(T—i—e,:r)de:
0 0

. (55)
2 g [N F(T.)],
k=1

whereN,, is defined as

N (T) = /O " dechg(T ). (56)

But if the energy transitional probability function is a non differential fiim this
expansion would be invalid, so, to generalize this equation we use theractbhal
Taylor expansion. Then, Eq. (1) can be written as

@ NQ(T)
Z - [ AT x)} + DS [F((H 1)f(T,x)] (57)
where
1 (63
N, = / q(T,e)e%de. 58
If 0 <a<1,thenEqg. (57) becomes
of(T,x o
L) < D [No() (7,29, (59)
Using Eq. (58), we propose a fractal model for the thick absorbers as
kr
q(T,e) = Telta’ (60)

wherekp,  are constants that depend on the incident particle propertiesy £ar
we lead to the classical transition probabilit7", ) = % [37]. In the following
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section we consider the space to be fractal and calculate the transiticabpityb
numerically.

5. EXTENSION OF THE CLASSICAL BOHR'S ENERGY LOSS CALCULATIO NS

In this Section, we give a physical fractal model to the transition of energy
Consider a heavy particle with a charge massM and velocityv passing through a
fractal medium. Suppose that there is a free and rest electron at sonmeelidtam
the particle path. After the collision we assume the heavy particle to be undkviate
from its trajectory because of its larger mddg > m.). We find the momentum
impulse electron receives from the collision with the heavy patrticle;

J:/th:e/ELdvx, (61)

where /| is the vertical component of electric field to the particle path. Using the
extension of electromagnetic laws we have

/ E % = 2% (62)
so that
92 2
J==C (63)
bu

and the energy lost by an electron will be

2 2.4
AT(b) = S e (64)

2me.  mev2b?

If N, isthe density of electrons, the energy lost by all the electrod¥ as

2224 d*b
T(b) = AT(b)NedV = ———= N, —d“x,
dT'(b) (b)N.dV TS 2 d“x (65)

where we have assumed that the fractal dimension of radius space isrtbesa
space. Then Eg. (65) becomes

d°b.
DIT = - v2 = 2y, / (66)
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Fig. 1 — Fractal space is a Cantor sé;gc(b).
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Fig. 2 — The numerical calculation of the integffaf’;® xc (b).

If we integrate Eq. (66) over Cantor space, we obtain the results shdvigsn

1 and 2.
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6. CONCLUSION

The Green’s and the Stokes’ theorems were generalized for functitmshe
fractal support. Thé'“-calculus was used to calculate the multipole moments of the
fractal charge distributions. In addition, we have used the Taylor ekpaimvolving
F“-derivatives to treat the more general energy transition probabilitytifms: We
have also proposed a new model for the energy losing of particles throatter,
which is useful in the case of non-differentiable functions. The adgastaf the
F“-calculus is that can be applied for every fractal sets and fractagésurv
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