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Abstract. In this paper, we present an algorithm of the homotopy analysis transform 
method (HATM) which is a combination of Laplace transform method and the 
homotopy analysis method (HAM) to solve generalized biological population models. 
The fractional derivatives are described by Caputo sense. The proposed method 
presents a procedure of constructing the set of base functions and gives the high-order 
deformation equations in a simple form. The proposed scheme provides the solution in 
the form of a rapidly convergent series. Three examples are used to illustrate the 
preciseness and effectiveness of the proposed method. The results show that the HATM 
is very efficient, simple and can be applied to other nonlinear problems. 

Key words: Laplace transform, homotopy analysis transform method, biological population 
model, Mittag-Leffler function. 

1. INTRODUCTION 

Fractional differential equations have gained importance and popularity 
during the past three decades or so, mainly due to its demonstrated applications in 
numerous seemingly diverse fields of science and engineering. For example, the   
nonlinear oscillation of earthquake can be modeled with fractional derivatives and 
the fluid-dynamic traffic model with fractional derivatives can eliminate the 
deficiency arising from the assumption of continuum traffic flow. The fractional 
differential equations are also used in modeling of many chemical processes, 
mathematical biology and many other problems in physics and engineering [1–16].  
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Nonlinear problems are important for engineers, physicists and 
mathematicians namely because most physical system are nonlinear in nature. 
However, the nonlinear equations are difficult to solve and lead to interesting 
phenomeno, e.g. chaos. The investigation of the exact solutions of nonlinear 
evolution equations plays an important role in the study of nonlinear physical 
phenomena. There are many approaches for seeking exact solutions, such as, 
Hirota’s method, Bäcklund and Darboux transformations, Painlevé expansions. 
Recently, many alternative methods used for solving both nonlinear and linear 
differential equations of physical interest. The Adomian decomposition method 
(ADM) [17–18], the homotopy perturbation method (HPM) [19–23], the homotopy 
analysis method (HAM) [24–30], the variational iteration method (VIM) [31–38] 
and other methods have been used to solve linear and nonlinear problems. The 
Laplace transform is totally incapable of handling nonlinear equations because of 
the difficulties that are caused by the nonlinear terms. Various ways have been 
proposed recently to deal with these nonlinearities such as the Laplace 
decomposition method (LDM) [39–43] and the homotopy perturbation transform 
method (HPTM) [44]. Very recently, the homotopy analysis method (HAM) is 
combined with the well-known Laplace transform to produce a highly effective 
technique called the homotopy analysis transform method (HATM) [45, 46] for 
handling many nonlinear problems. 

The fractional optimal control problems have been solved by Baleanu et al. 
[48]. Golmankhaneh et al. have employed the homotopy perturbation method 
(HPM) for solving a system of Schrödinger-Korteweg-de Vries equations [49]. 

In this paper, we consider the nonlinear fractional-order biological population 
model in the form: 

 
2 2

2 2
2 2

( ) ( ) ( ),u u u f u
t x y

α

α

∂ ∂ ∂
= + +

∂ ∂ ∂
     (1) 

with the given initial condition  

 0( , , 0) ( , ),u x y f x y=                  (2) 

where u denotes the population density and f represents the population supply due 
to birth and deaths. This nonlinear fractional biological population model is 
obtained by replacing the first time derivative term in the corresponding biological 
population model by a fractional derivative of order α with 0 < α ≤ 1. The 
derivatives are understood in the Caputo sense. The general response expression 
contains a parameter describing the order of the fractional derivative that can be 
varied to obtain various responses. In the case of α = 1 the fractional biological 
population model reduces to the standard biological population model. Some 
aspects of such a model have been studied previously by other researchers [51, 52]. 
In this paper, further we apply the homotopy analysis transform method (HATM) 
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to solve the fractional biological population models. The objective of the present 
paper is to modify the homotopy analysis method (HAM) to solve nonlinear 
fractional biological population models. The homotopy analysis transform method 
(HATM) is a combination of the homotopy analysis method (HAM) and Laplace 
transform method. The advantage of this method is its capability of combining two 
powerful methods for obtaining exact and approximate analytical solutions for 
nonlinear equations. The fact that the HATM solves nonlinear problems without 
using Adomian’s polynomials and He’s polynomials is a clear advantage of this 
technique over the Adomian’s decomposition method (ADM) and the homotopy 
perturbation transform method (HPTM). The plan of our paper is as follows: Brief 
definitions of the fractional calculus are given in Section 2. The HATM is 
presented in Section 3. In Section 4, three numerical examples are solved to 
illustrate the applicability of the considered method. Conclusions are presented in 
Section 5. 

2. BASIC DEFINITIONS 

In this section, we mention the following basic definitions of fractional 
calculus.  

Definition 1. The Riemann-Liouville fractional integral operator of order 
0,α >  of a function ( ) , 1f t C µ∈ µ ≥ − is defined as [5]: 

 1
0

1J ( ) ( ) ( )d , ( 0),
( )

t
f t t fα α−= − τ τ τ α >

Γ α ∫        (3) 

 0J ( ) ( ).f t f t=                             (4) 

For the Riemann-Liouville fractional integral we have: 

 ( 1)J .
( 1)

t tα γ α+γΓ γ +
=
Γ γ + α +

                  (5) 

Definition 2. The fractional derivative of ( )f t in the Caputo sense is defined 
as [10]: 

 1 ( )
0

D ( ) D ( )
1 ( ) ( )d ,

( )

n n

t
n n

f t J f t

t f
n

α −α

−α−

= =

= − τ τ τ
Γ − α ∫

 (6) 

for 1 , , 0.n n n N x− < α ≤ ∈ >  
Definition 3. The Laplace transform of the Caputo derivative is given by 

Caputo [10]; see also Kilbas et al. [13] in the form 
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1

r 1 ( )

r 0
L [D ( )] L[ ( )] (0 ), 1 .

n
rf t s f t s f n n

−
α α α− −

=

= − + − < α ≤∑  (7) 

Definition 4. The Mittag-Leffler is defined as [47]: 

 
0

( ) ( , Re( ) 0).
( 1)

k

k

zE z C
k

∞

α
=

= α∈ α >
Γ α +∑        (8) 

3.  HATM FOR GENERALIZED BIOLOGICAL POPULATION MODEL 

We consider the generalized biological population model of the form: 

 
2 2 2 2

2 2

( ) ( ) (1 ),a bu uu ku ru
t x y

α

α

∂ ∂∂
= + + −

∂ ∂ ∂
                  (9) 

0, , , 0 1,t x y> ∈ < α ≤  with the initial condition 

 0( , , 0) ( , ).u x y f x y=                 (10) 

Taking the Laplace transform on both sides of equation (9) subject to the initial 
condition (10), we have 

 
2 2 2 2

0 2 2

( ) ( )1 1L[ ( , , )] ( , ) L (1 ) 0.a bu uu x y t f x y ku ru
s s x yα

 ∂ ∂
− − + + − = ∂ ∂ 

 (11) 

We define the nonlinear operator 

 ( )
2

2
0 2

1 1[ ( , , ; )] L[ ( , , ; )]] ( , ) L ( , , ; )N x y t q x y t q f x y x y t q
s s xα

∂φ = φ − − φ∂
 

                         ( ) ( )
2

2
2

( , , ; ) ( , , ; ) 1 ( , , ; ) ,a bx y t q k x y t q r x y t q
y

∂
+ φ + φ − φ ∂ 

 (12) 

where [0, 1]q∈  and ( , , ; )x y t qφ  is a real function of x, y, t and q. We construct a 
homotopy as follows 

 0(1 )L[ ( , , ; ) ( , , )] ( ) [ ( , , )],q x y t q u x y t qH t N x y t− φ − = φ  (13) 

where “L” denotes the Laplace transform, [0, 1]q∈  is the embedding parameter, 
( )H t denotes a nonzero auxiliary function, ћ 0≠  is an auxiliary parameter, 

0 ( , , )u x y t is an initial guess of ( , , )u x y t and ( , , ; )x y t qφ  is a unknown function. 
Obviously, when the embedding parameter 0q =  and 1,q =  it holds 
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 0( , , ;0) ( , , ), ( , , ;1) ( , , ),x y t u x y t x y t u x y tφ = φ =  (14) 

respectively. Thus, as q increases form 0 to 1, the solution ( , , ; )x y t qφ  varies from 
the initial guess 0 ( , , )u x y t to the solution ( , , ).u x y t  Expanding ( , , ; )x y t qφ in 
Taylor series with respect to q, we have 

 0
1

( , , ; ) ( , , ) ( , , ) ,m
m

m
x y t q u x y t u x y t q

∞

=

φ = +∑  (15) 

where  

 0
( , , ; )1( , , ) .

!

m

m qm

x y t qu x y t
m q =

∂ φ
=

∂
 (16) 

If the auxiliary linear operator, the initial guess, the auxiliary parameter , and the 
auxiliary function are properly chosen, the series (15) converges at q = 1, then we 
have 

 0
1

( , , ) ( , , ) ( , , ),m
m

u x y t u x y t u x y t
∞

=

= +∑  (17)  

which must be one of the solutions of the original nonlinear equations. According 
to the definition (17), the governing equation can be deduced from the zero-order 
deformation (13). Define the vectors 

 0 1{ ( , , ), ( , , ),..., ( , , )}.m mu u x y t u x y t u x y t=  (18) 

Differentiating the zeroth-order deformation equation (13) m-times with respect to q 
and then dividing them by m! and finally setting 0,q =  we get the following  
mth-order deformation equation: 

 1 1L[ ( , , ) ( , , )] ( ) ( ).m m m m mu x y t u x y t qH t u− −− χ = ℜ  (19) 

Applying the inverse Laplace transform, we have 

 1
1 1( , , ) ( , , ) L [ ( ) ( )],m m m m mu x y t u x y t qH t u−
− −= χ + ℜ  (20) 

where  

 
1

1 01

[ ( , , ; )]1( ) ,
( 1)!

m

m m qm

N x y t qu
m q

−

− =−

∂ φ
ℜ =

− ∂
 (21) 

and   

 
0, 1,
1, 1.m

m
m

≤
χ =  >

 (22) 
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4. APPLICATIONS 

In this section, we use the HATM to solve the generalized biological 
population models. 

Example 4.1. Consider the following generalized biological population model: 

 
2 2 2 2

2 2

( ) ( ) (1 ),u uu u ru
t x y

α

α

∂ ∂∂
= + + −

∂ ∂ ∂
 (23) 

with the initial condition  

 1( , , 0) exp ( ) .
2 2

ru x y x y
 

= + 
  

 (24) 

Applying the Laplace transform subject to the initial condition, we have 

 
2 2 2 2

2 2

1 1L[ ( , , )] exp ( )
2 2

( ) ( )1– L (1 ) 0.

ru x y t x y
s

u u u ru
s x yα

 
− + − 

  
 ∂ ∂

+ + − = ∂ ∂ 

 (25) 

The nonlinear operator is  

 ( ) ( )

( )

2 2
2 2

2 2

1 1[ ( , , ; )] L[ ( , , ; )]] exp ( ) –
2 2

1 L ( , , ; ) ( , , ; )

( , , ; ) 1 ( , , ; ) ,

rN x y t q x y t q x y
s

x y t q x y t q
s x y

x y t q r x y t q

α

 
φ = φ − + 

  
∂ ∂− φ + φ +∂ ∂

+φ − φ 


 (26) 

and thus  

  

( )
1

2

1 1 12
0

1 1
2

1 1 12
0 0

1 1 1( ) (1 ) exp ( ) L
2 2

.

m

m m m m r m r
r

m m

r m r m r m r
r r

ru L u x y u u
s s x

u u u r u u
y

−

− − − −α
=

− −

− − − − −
= =

    ∂  ℜ = − − χ + −    ∂    
   ∂    + + −
   ∂

   

∑

∑ ∑

 (27) 

The thm -order deformation equation is given by 
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 1 1L[ ( , , ) ( , , )] ( ).m m m m mu x y t u x y t u− −− χ = ℜ  (28) 

Applying the inverse Laplace transform, we have 

 1
1 1( , , ) ( , , ) L [ ( )].m m m m mu x y t u x y t u−
− −= χ + ℜ  (29) 

Solving the above equation (29), for 1, 2,3...,m = we get 

 

1

2

2
2

2
3

2
2

1( , , ) exp ( ) ,
2 2 ( 1)

1( , , ) (1 ) exp ( )
2 2 ( 1)

1exp ( ) ,
2 2 (2 1)

1( , , ) (1 ) exp ( )
2 2 ( 1)

12 (1 ) exp ( )
2 2

r tu x y t x y

r tu x y t x y

r tx y

r tu x y t x y

r tx y

α

α

α

α

α

 
= − + 

Γ α +  
 

= − + + + 
Γ α +  

 
+ + 

Γ α +  
 

= − + + + 
Γ α +  

 
+ + + 

  
3

3

–
(2 1)

1exp ( ) ,
2 2 (3 1)

r tx y
α

Γ α +

 
− + 

Γ α +  

 (30) 

 
and so on. 

Taking 1= − , the solution is given by 

 
0 0

( )1( , , ) ( , , ) exp ( )
2 2 ( 1)

1exp ( ) ( ).
2 2

m

m
m m

tru x y t u x y t x y
m

r x y E t

∞ ∞
α

= =

α
α

 
= = + = 

Γ α +  
 

= + 
  

∑ ∑
 (31) 

If we put 1,α = we obtain the exact solution: 

 1 1( , , ) exp ( ) exp ( ) ,
2 2 2 2

tr ru x y t x y e x y t
   

= + = + +   
      

 (32)  

which is in full agreement with the results obtained by El-Sayed et al. [50] and 
Arafa et al. [51]. 
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Example 4.2. Consider the following generalized biological population model: 

 
2 2 2 2

2 2

( ) ( ) ,u uu ku
t x y

α

α

∂ ∂∂
= + +

∂ ∂ ∂
 (33) 

with the initial condition  

 ( , , 0) .u x y xy=  (34) 

Applying the Laplace transform subject to the initial condition, we have 

 
2 2 2 2

2 2

( ) ( )1 1L[ ( , , )] L 0.u uu x y t xy ku
s s x yα

 ∂ ∂
− − + + = ∂ ∂ 

      (35) 

The nonlinear operator is  

 
( )

( )

2
2

2

2
2

2

1 1[ ( , , ; )] L[ ( , , ; )]] L ( , , ; )

( , , ; ) ( , , ; ) ,

N x y t q x y t q xy x y t q
s s x

x y t q k x y t q
y

α

∂φ = φ − − φ +∂
∂

+ φ + φ ∂ 

 (36) 

and thus  

 

1
2

1 1 12
0

1
2

1 12
0

1 1( ) L[ ] (1 ) L

.

m

m m m m r m r
r

m

r m r m
r

u u xy u u
s s x

u u ku
y

−

− − − −α
=

−

− − −
=

  ∂  ℜ = − − χ − +
  ∂

 
 ∂  + +
 ∂

  

∑

∑

  (37) 

The thm -order deformation equation is given by 

 1 1L[ ( , , ) ( , , )] ( ).m m m m mu x y t u x y t u− −− χ = ℜ  (38) 

Applying the inverse Laplace transform, we have 

 1
1 1( , , ) ( , , ) L [ ( )].m m m m mu x y t u x y t u−
− −= χ + ℜ  (39) 

Solving the above equation (39), for 1, 2,3...,m = we get 
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1

2
2 2

2

2
2 2 2

3

3
3 3

( , , ) ,
( 1)

( , , ) (1 ) ,
( 1) (2 1)

( , , ) (1 ) 2 (1 ) –
( 1) (2 1)

,
(3 1)

tu x y t k xy

t tu x y t k xy k xy

t tu x y t k xy k xy

tk xy

α

α α

α α

α

= −
Γ α +

= − + +
Γ α + Γ α +

= − + + +
Γ α + Γ α +

−
Γ α +

 (40) 

and so on. 
Taking 1= − , the solution is given by 

 
0 0

( )( , , ) ( , , ) ( ).
( 1)

m

m
m m

ktu x y t u x y t xy xyE kt
m

∞ ∞ α
α

α
= =

= = =
Γ α +∑ ∑  (41) 

If we put 1,α = we obtain the exact solution: 

 ( , , ) ,ktu x y t xye=  (42)  

which is in full agreement with the results given by El-Sayed et al. [50] and Arafa 
et al. [51]. 

Example 4.3. Consider the following generalized biological population model: 

 
2 2 2 2

2 2

( ) ( ) ,u uu u
t x y

α

α

∂ ∂∂
= + +

∂ ∂ ∂
 (43) 

with the initial condition  

 ( , , 0) sin sinh .u x y x y= ⋅  (44) 

Applying the Laplace transform subject to the initial condition, we have 

 
2 2 2 2

2 2

( ) ( )1 1L[ ( , , )] sin sinh L 0.u uu x y t x y u
s s x yα

 ∂ ∂
− ⋅ − + + = ∂ ∂ 

 (45) 

The nonlinear operator is  

  
( )

( )

2
2

2

2
2

2

1 1[ ( , , ; )] L[ ( , , ; )]] sin sinh L ( , , ; )

( , , ; ) ( , , ; ) ,

N x y t q x y t q x y x y t q
s s x

x y t q x y t q
y

α

∂φ = φ − ⋅ − φ +∂
∂

+ φ + φ ∂ 

 (46) 
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and thus  

 

1 1

1 1
2 2

1 1 12 2
0 0

1( ) [ ] (1 ) sin sinh

1– L .

m m m m

m m

r m r r m r m
r r

u L u x y
s

u u u u u
s x y

− −

− −

− − − − −α
= =

ℜ = − − χ ⋅ −

    ∂ ∂    + +
    ∂ ∂

    
∑ ∑

  (47) 

The thm -order deformation equation is given by 

 1 1L[ ( , , ) ( , , )] ( ).m m m m mu x y t u x y t u− −− χ = ℜ  (48) 

Applying the inverse Laplace transform, we have 

 1
1 1( , , ) ( , , ) L [ ( )].m m m m mu x y t u x y t u−
− −= χ + ℜ  (49) 

Solving the above equation (49), for 1, 2,3...,m = we get 

 

1

2

2
2

2
3

2 3
2 3

( , , ) sin sinh ,
( 1)

( , , ) (1 ) sin sinh
( 1)

sin sinh ,
(2 1)

( , , ) (1 ) sin sinh
( 1)

2 (1 ) sin sinh sin sinh ,
(2 1) (3 1)

tu x y t x y

tu x y t x y

tx y

tu x y t x y

t tx y x y

α

α

α

α

α α

= − ⋅
Γ α +

= − + ⋅ +
Γ α +

+ ⋅
Γ α +

= − + ⋅ +
Γ α +

+ + ⋅ − ⋅
Γ α + Γ α +

 (50) 

and so on. 
Taking 1= − , the solution is given by 

 0 0

( )( , , ) ( , , ) sin sinh
( 1)

sin sinh ( ).

m

m
m m

tu x y t u x y t x y
m

x yE t

∞ ∞ α

= =

α
α

= = ⋅ =
Γ α +

= ⋅

∑ ∑
 (51) 

If we put 1,α = we obtain the exact solution: 

 ( , , ) sin sinh ,tu x y t x ye= ⋅      (52)  

which is in full agreement with the results given by El-Sayed et al. [50] and Arafa 
et al. [51]. 
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5. CONCLUSIONS 

In this paper, the homotopy analysis transform method (HATM) has been 
successfully applied to obtain the exact solutions of the generalized biological 
population equations subject to some initial conditions.  The results obtained using 
the scheme presented here agree well with the analytical solutions and the 
numerical results obtained by Adomian’s decomposition method (ADM) [50] and 
homotopy analysis method (HAM) [51]. However, El-Sayed et al. [50] have shown 
that ADM does not converge in general, in particular, when the method is applied 
to linear operator equations. It was also shown that ADM is equivalent to Picard 
iteration method, and therefore it might diverge. The homotopy analysis transform 
method (HATM) is another technique used to derive an analytic solution for 
nonlinear operators. It provides us with a simple way to adjust and control the 
convergence region of solution series by choosing proper values for auxiliary 
parameter ħ and auxiliary function H(t). The results reveal that HATM a very 
powerful and efficient technique in finding analytical solutions for wide classes of 
nonlinear differential equations. 
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