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Abstract. The energy balance photon – medium, during the light travelling, through a specific
continuous interaction between a single photon and a homogeneous, infinite medium (fully ionized
plasma or a transparent dielectric), was studied. We obtained a wave equation for the interacting
photon. To explain the interaction in quantum terms, we assume a certain photon – medium
interaction energy, macroscopically materialized by the existence of the refractive index. It turns out
that the interaction is of a scalar type, for vanishing rest mass and of spin 1 particle submitted both to
scalar and vectorial fields. We found out an expression of the propagation equation of the photon

through a non-dissipative medium, using a coupling between the photon spin S  and the scalar

interaction field ( , ).S SE H
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1. INTRODUCTION.  KRAMERS  TYPE  FORMALISM

Many years ago, Nicholas Ionesco-Pallas proposed [1] a new formulation of
Electrodynamics in homogeneous moving media, different from those already
known, due to Abraham and Minkowski. See for instance [2]. This new approach is
based on two distinct hexa-vectors ,AQ E B  and , ,BQ D H  or two
Q-vectors [3, 4].

In Romanian literature, Q-vectorial formulation of Electrodynamics was
promoted by Nicholas Ionesco-Pallas et al. [5–7] and George Moisil [8]. In view of
ensuring a correct relativistic behavior of time relaxation in dielectrics, a certain
constraint is, however, necessary to be accomplished before any application of the
Q-vectorial formalism. This is a connection between the resistivity as a 4-vector,

,a  and the conductivity  under the form

1, .
( ) ( )

a i v
v c v

(1)
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The constraint is equivalent to the statement that “The structure of
Electrodynamics in moving homogeneous media may be organized in terms of
Q-vectors if, and only if, conductibility and resistivity are combined together as a
4-vector”. In other words, conductibility must vary, in terms of velocity as

2

2( ) (0) 1 vv
c

(2)

In this paper, the effort of the author is focused on a rather different direction,
than it is usually paid by the physicists working with photons. While the great part
of them deals with free photons implied in optical experiments or confined in ideal
cavities and constrained to thermal equilibrium [9–13], the purpose of this paper is
to study the behavior of photons, interacting with the environmental matter, during
the path of light through plasma or dielectric media. The special character of this
interaction is coming from the physical characteristics of the photon – its inertial
mass and its electrical charge are vanishing. A methodological principle may,
however, be useful in this case, namely an analogy between the light propagation
in an optical guide and the light propagation in plasma near the cut off limit
[14, 15]. Additional information may be equally gathered when classical Fresnel’s
formulas are reinterpreted in modern quantum mechanical terms due to an idea of
W. Heisenberg [18–20]. Finally, a surprising idea is coming from the possibility to
put into evidence even the coupling of the photon spin with the gradient of the
interacting energy in propagation through a dielectric medium. All these aspects
deserve a unitary treatment in a revised approach and make the subject of the
present work. At the same time, arguments are brought to accept the idea that the
wave function of the interacting photon is a Q-vector (connected in a specific way
with an irreducible spinor).

As far as we are convinced that Relativity Theory is a theoretical tool for
entering upon any problem of modern physics (as a result of several already
worked out experiments), we have no doubt that conductibility variation in terms
of velocity will be confirmed too.

2. THE  PHOTON  WAVE  FUNCTION

So, coming back to our problem (which is a quantum one) we may state that
two Q-vectors AQ  and BQ  are necessary for a complete description of energy
propagation in this case, namely

, .A BQ E iB Q D iH (3)

The de Broglie wave propagation associated to the photon propagation is
written as
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.A A B BK Q K Q (4)

For a homogeneous and transparent medium with

, , 1,D E B H n (5)
one obtains

2* 2 2 2 2 2 21( ) ( ) ( ).
8A B B AK K E K K H C E H (6)

Here 2C  is normalization constant. Identifying the constant in (6), one
obtains the algebraic system of equations.

1 ,
8
1 ,
8

A B

B B

K K C

K K C
(7)

whose solution is

1 1, .
1 18 8A BK C K C

n n
(8)

The photon wave function is now normalized in such a way so that the
presence probability of a photon is proportional to the energy density in the
Euclidian space.

1 1 ,
1 18 8A BC Q Q C E i H

n n
(9)

2*
1 2 3 1 2 3.

8
E D H Bdx dx dx C dx dx dx (10)

3. THE  MATRIX  REPRESENTATION
OF  PHOTON  WAVE  FUNCTION

It is now convenient to adopt a matrix representation, alternatively to the
standard vectorial representation:

1

2

3

1 .
8

x x

y y

z z

E i H

C E i H

E i H

(11)
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For every component k there is a propagation equation

2
( )

2 2
1 0, (0) , .i kr t

k k k
ce v

v t
(12)

The momentum and energy operators may operate delivering the dispersion
equation

2
2

2

ˆ ˆ,

ˆ ˆ, ,

0, .

k k k k

k

p E
i i t

p K E

K K
v cv

(13)

The recovering of the dispersion ,K  relationship is a proof for using

momentum operators ˆ,p E  just as in Quantum mechanics.
On the other hand, the Maxwell equations in a transparent infinite

homogeneous medium can be written in the form

0, ,

0, .

E E H
c t

H E E
c t

(14)

The curl-type equation of (14) can be further written in the form of a single
equation for the complex function  as defined in (9), so that

, 0,

.

i
v t

cv
(15)

Actually, the first equation (15) is a Schrödinger-type equation. In order to
make this assertion more convincing, let us introduce the energy operator from
(13), the matrix notation of  from (11) and the spin 1 algebra, namely

, ,i (16)

1 2 3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 .

0 0 0 0 0 0 0

i i

i i i i i

i i

(17)
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We get in this way a perfect equivalence between the matrix and vector
notations, that is

* * * *
1 1 2 2 3 3 1 1 2 2 3 3, ,i i i i i i

1
* * *

2 1 2 3

3

, [ ], (18)

3
* * *

1

.
k

jk
k j k kjk

k

Also

13 2 1 2 3 3 2

3 1 2 3 1 1 3 2

2 1 3 1 2 2 1 3

( )0

0 ( )

0 ( )

aa a a a

a i a a i a a i a

a a a a a

,

ˆ .

a i a

p
(19)

4. THE  PHOTON  WAVE  EQUATION

As a consequence of the last equalities, the first equation (15) takes the
specific form

ˆ ˆ ˆ ˆ, , .E H E H v S p
i t

 (20)

In our opinion, this is the photon wave equation for an infinite medium
characterized by the constants ( , ). Quite specific for this equation is the
“irrelevance” of the constant . From Eq. (18) we get

*
*, .v v

i t i t
(21)

By the scalar multiplication at left of the first of these equations by *  and,
similarly, of the second one by ,  and subtracting the results, we finally get

*
* * * .v

i t t
(22)
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Using further the identity

B A A B A B (23)

for *B  and A  we conclude that the right part of Eq. (22) is reduced to the

compact form *v  while the left part can be reduced to * .
i t

In this way equation (22) becomes

* * 0.iv
t

(24)

In addition, it can easily be verified the following identities

*

* * * * * *
3 2 2 3 1 1 3 3 1 2 2 1 1 2 3

*

,

( ) ( ) ( ) ,

( ),

S i i i i i i

S i

(25)

so that the equation (24) gets the “quantum” form

( ) 0.v S
t

(26)

Obviously, this equation allows simultaneously two interpretations:

a) as the conservation law of the photon localization probability, and
b) as the conservation law of the corresponding electromagnetic energy.

The two interpretations are interrelated and allow the determination of the
normalization constant .C

Let’s now go back to Eq. (12) in its quasi-d’Alambertian form

2

2 2
1 0, .cv
v t

(27)

The immediate temptation is to “generalize” this equation for an arbitrary

v  0. For this purpose, we add and subtract the term 
2

2 2
1
v t

 so that we

compose the Lorentz operator as a d’Alambert invariant, namely

2 2
2

2 2 2 2
1 1 (1 ) 0.n
c t c t

 (28)

On the other hand, from Eq. (13) it results that the action of the operator 
t

upon the wave function  is
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ˆ ,i E i
t h

(29)

so that from Eqs. (28) and (29) we finally get

22
2

2 2
1 (1 ) 0.n

cc t
(30)

So far, the photon medium interaction was investigated under its energetic
aspect, and the final equation (30) is equivalent to Helmholtz equation (27) .
Possible additional interactions, coming from the coupling of the photon spin with
the gradient of the medium potential energy U, (if any), were assumed quite small
and disregarded. In this first aproximation, the wave function  is a scalar
quantity, and the probabilitie interpretation on  reduces to the additional
integrability condition of *  over the three – dimensional Euclidian space E3.

To go further in the photon-medium interaction procces, we need to know
more about the photon spin. There is a certain well-defined relationship betwen the
dimensionality of the Hilbert space wave functions and spin. For photon, the
respective dimensionality is 2 1 3,S  or, if we want to account for the parity
conservation too, this number may be dubled 2(2 1) 6.S  We observe that the
dimensionality 4 is prohibited for photon. The nature of this prohibition was
enlightned in the paper „Entering upon the spinor concept from a vectorial stand
point“ – work due to Nicholas Ionesco-Pallas [24] and published in 1970. The
mentioned author demonstrated that the wave equation, in the case when  is a
Minkowski 4 – vector does separate – via a Foldy transformation for avoiding the
negative energy states – into a scalar equation and a spin 1 equation (having three
wave components). This is in strong contrast with the wide (and groundless)
opinion that the photon wave function is delivered by the 4 – potential equation.

5. THE  PHOTON  PROPAGATION
THROUGH  A  DIELECTRIC  MEDIUM

Let’s continue with a reasoning based on experiment as described in [14, 15].
In this case the propagation medium of the photon is represented by infinite non-
dispersive plasma (Fig. 1), hence the wave equation of the photon can be written in
the form

2
2

2 2

2

1 0,

1 .

K
c t

K n
c

(31)
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Fig. 1 – The complex space of the potential energy of interaction between photons
and the propagation medium. L is the dielectric length.

Also in [14] has been introduced the notation

21 , 1,pU U c K n n (32)

where the quantity Up denotes the medium (plasma) potential, so that the
dispersion equation of the photon in the plasma is

1
2 2 2 2 .pU c p  (33)

Let’s consider further the propagation of a photon through a dielectric
medium. For this purpose we will start from the energy equation of a particle
moving in a field composed of both a vectorial component (of the electrodynamic
type) and a complex scalar component (of the meso-dynamic type). An argument
in favor of the scalar nature of the interaction between a photon and the dielectric
medium resides in allowing the use of Fermat’s principle for the propagation of a
light ray just as in Einstein’s theory of gravitation. In conclusion, a particle moving
in a field characterized by both vector potential A  and scalar potential , as well
as by a scalar potential U, has the following expression

1
2 2 2 2

0( ) ( ) ,

Re Im .

E q m c U cp qA

U U i U
(34)

Here the quantity U has the dimensions of energy and not of a potential as
has been denominated in [14, 15]. Consequently, U is not comparable with  (the
electric scalar potential) or with A  (the magnetic vector-potential) but with q ,
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respectively with .qA  In conclusion, even in the limiting case m0  0 (when the
particle becomes a photon and has no electrical charge) a particle can carry a
“charge”, qS, of non-electromagnetic nature, as a result of the permanent
interaction of the photon with the medium through which it propagates. In other
words, we can formally write U = qS S, (with the index S from the word scalar).
However, the separation of the quantity U into the product charge X potential =
interaction energy, possible in the case of a mesonic interaction, do not allow the
univocal definition of a scalar charge characterizing a local interaction of the
photon with the propagation medium (transparent dielectric or plasma). The
propagation is non-dispersive if ImE = 0, that is (for m0 = 0, q = 0)

Re Im 0.U U (35)

Consequently, from (34) and (35) we get
1

2 2 2 2 2

0

(Re ) (Im ) ,

Re Im 0, 0, 0.

E U U c p

U U m q
(36)

We have from here two distinct situations for the photon non-dispersive
propagation through an infinite medium (Fig. 1):

2

2

) Im 0, 1 , 1 (plasma medium)

) Re 0, 1, 1 (dielectric medium).

p

d

a U U U n n

b U U U i n n

It follows that the equation of photon propagation through an infinite
dielectric transparent medium, equivalent with Eq. (33) of photon propagation
through a plasma, is

1
2 2 2 22 , 1, 1.d dU c p U U i n n (37)

Summarizing, notwithstanding the propagation medium, the photon wave
equation is

2
2

2 2
1 0,K
c t

(38)

1
2 2

1 (plasma)
1 ,

1 (dielectric).
K n

c

For  = –1 the static solution of  is of the Seelinger-Mie-Proca-Yukawa type, and
for  = +1 it is of the Helmholtz type.

The use of equation (38) allows the description of the passage of light from a
medium with refraction index 0 1n  into a medium with refractive index n > 1. In
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addition, at the separation surface of the two media one considers the laws of
conservation of photon energy and impulse. Also the normalization of the photon
wave function is achieved by fixing the steady flux of incident photons. Under
these conditions, the refractive index plays the same role for the photon just as it
does the electrical potential for a charged particle.

A particular case of potential pointed out in [14, 15], is that one which is
generated by the guided propagation of photons for which we distinguish the
following situations:

a) Empty wave guide. The spatial limitation exerted by the wave guide walls
perpendicularly to the propagation direction generates the potential energy Ug of
the form

,g criticU (39)

where critic is the critical frequency of the wave guide. This is a real potential
energy.

b) Lossless dielectric filled wave guide. The rule of energy summation is
applied in the form

2 2 ,g d g dU U U (40)

Ud being imaginary, yet the quantity under root in (40) can be either positive or
negative; also the potential energy Ug + d can be either real and smaller than the
potential energy of empty wave guide, or alternately, it can be imaginary.

c) Lossless plasma filled guide (Fig. 2). In this case the resulting potential
Ug + p is always real (see [14, 15]).

2 2 ,g p g pU U U (41)

Fig. 2 – The potential energy Ug + p of interaction between photons and a waveguide
filled with a lossless plasma. L is here the plasma filled waveguide length.
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Notice that the waveguide potential energy Ug and that of the plasma Up are
out of phase by a phase factor ei  (Fig. 2).

Finally, the results concerning the photon propagation through a transparent,
non-dissipative dielectric medium can be summarized as follows:

– the photon energy remains unchanged by the passage from a medium of
refractive index n1 in a medium with refractive index n2 n1;

– the photon movement through a medium with refractive index n is
governed by the variational principle of the relativistic analytical mechanics.

, 0,E vp L L (42)

where E is the photon energy, p  is its impulse, v  is its propagation velocity and L
is its Lagrange function. However, for the photon L  0 at the same time with the

particle rest mass. Thus, the photon energy becomes cE vp p
n

 (considering

the vectors v  and p  as having the same orientation), in agreement with formula
(37) which requires the introduction of a scalar potential energy, both Lorentz
invariant and imaginary.

6. THE  SYMMETRY  PROPERTIES
OF  THE  PHOTON  WAVE  FUNCTION

Let’s consider in continuation the symmetry properties of the photon wave
function in (plasma and dielectric) media. Thus, the wave function  satisfies
simultaneously the equation (20) (of Schrödinger-type), the equation of
conservation of the probability and of the energy (26), and equation (38) of the
generalized D’Alambert type (with the “potential” of the medium). The properties
which we shall refer to devolve from the quality of Q -vector (hexavector) of .

Generally, the Q -vectors represent an alternate modality of the foundation of
Maxwell-Lorentz electrodynamics, which is rather based on the Plucker-Cayley
hexa-vectorial geometry than on the Poincaré-Minkowski tetra-dimensional geo-
metry [6, 7].

The following advantages of this new thinking are emphasized here:
a) The formulation of electrodynamics in homogeneous fields (with ,  as

constants of material) [1] and
b) The formulation of the Schrödinger-type of the refractive index problems

(following an idea of Heisenberg [18].
A specific characteristic of Q -vectors is the similarity between an infinitely

slow rotation and an infinitely slow Lorentz translation [3]. In contrast to a finite
roto-translation, the wave function  obeys the law
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1 1
2 22 2

2
( )

(1 ) 1 (1 ) ,

,

q q
q q q

q

q i

(43)

where  marks a pure rotation and .v
c

 By separating

Re Imi (44)

the transformation law (43) gives the invariants

2 2
1

2

(Re ) (Im ) (Larmor),

(Re ) (Im ) .

I

I
(45)

The invariant I1 has been used by Joseph Larmor for the Minkowski-invariant
formulation of the linear electrodynamics (Maxwell-Lorentz). The pseudo-invariant

2I  is used in various schemes proposed for the non-linear electrodynamics. We can

conclude, therefore, that starting from the wave function ,  we have a theoretical
basis to cover not only the Maxwell-Lorentz electrodynamics in vacuum and in
other homogeneous media

.
8
c E i H  (46)

but various relativistic variants of non-linear electrodynamics (Born, Infeld,
Schrödinger, etc) as well.

The spin concept implied in our theoretical approach contains two distinct
mathematical formulations.

a) an “electromagnetic spin” (see the matrix operators 17) and
b) a “quantum spin” (see the matrix operators 74). It is now opportune to

introduce the notations

1 2 3

1 2 3

(for the elctromagnetic spin),

(for the quantum spin),

Ai Bi Ci

S i i i
(47)

The self-ortogonality conditions (66) lead to the spin algebra

(electromagnetic spin) (quantum spin).

BC CB iA i

CA AC iB i

AB BA iC i
(48)

The algebra is formally the same, irrespectively of the manner used for
inserting the concept. Further on, we may express the two spin algebras in a
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different (but equivalent way) by resorting exclusively to real matrices, denoted
with common (latin and greek) letters

, , ,

, , .

A ai B bi C ci

i
(49)

Now, a clear distinction between the two algebras is revealed, pointing out
their belong to distinct physical objects

, ,

, ,

, .

bc cb a

ca ac b

ab ba c

(50)

While the left placed algebra still preserve the cyclic rule of composition, the
right placed algebra is qualitatively different (based rather on combinations than on
cyclic permutations). The conclusion is that the goings over from electrodynamic
spin to the quantum spin is not possible resorting exclusively to the q-vectorial
transformation. It is necessary to perform a “rotation”, but not in the real (x, y, z)
space. The rotation should be in the complex three-dimensional space of the wave
functions, which is of the Hilbert type.

Starting from the general roto-translation transformation law (43), two
important particular transforms are revealed, namely

a) 0, 0 (pure rotation movement)

b) 0, 0 (inertial Lorentz movement).
(51)

Explicitly, these transforms become
1

2 2

1
2 2

( ) , (1 ) ,
1

( ) , (1 ) .
1

i

(52)

Using the formal transform [5, b]

( , )i    or 1 , ,
i

(53)

the pure rotation transform goes into a pure Lorentz translation (and conversely).
Using further the matrix notation instead of the vector (Cartesian) one, the wave
function becomes

1 1 1 1

2 2 2 2

3 3 3 3

( ) , ( ) , (54)
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where

2 2 2
2
1 3 1 2 2 1 3

2 2 2
2

3 1 2 2 1 2 3

2 2 2
2

2 1 3 1 2 3 3

, ,
1 1 1

( ) , , ,
1 1 1

, ,
1 1 1

 (55)

2
1 3 1 2 2 1 3

2
3 2 1 2 1 2 3

2
2 3 1 1 3 2 3

1 , ,
1 1 1

( ) , 1 , .
1 1 1

, 1
1 1 1

i i

i i

i i

(56)

The symmetry properties of matrices ( )  are

1 ˆ( ) ( ) ( ), ( ) ( ) .I (57)

With their help we conclude that  and S  from Eq. (26) reveal
the invariance properties required by the equation of conservation of the photon
localization probability, namely

ˆ( ) ( ) , ( ) ( ) ,I (58)

( ) ( ) ( ) ( ) , ( ) ( ).S S S (59)

The results expressed by the equations (57–59) are valid in a reference frame
to be found in a pure rotation with respect to the propagation medium (transparent
dielectric or plasma).

The Lorentz transforms are compatible with Eq. (38) if the following two
conditions are fulfilled:

a)  is Larmor invariant of the electromagnetic field;
b) The wave equation has the form OL = 0, where OL is a Lorentz invariant

operator. The determination of the form of OL on the basis of the hypothesis of the
field U, produced by the propagation medium, leads to some deviations in the
description of the quantum behavior of the photon in the considered medium. Such
a peculiarity is the fact that  is an eigen - function of the energy and of 2 ,S  but
not of S3.
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Coming back to the equation (38), it comes out that the requirement of
Lorentz invariant reduces to the condition

K = 4 – dimensional invariant (60)

In its turn, this condition splits off in other two conditions, namely

 = 0, n = 4 – dimensional scalar (61)

where 0 is the frequency in the rest frame with respect to the propagation
medium. But 0 can be expressed by the frequency  in the moving frame with the

velocity v c  and under the angle ( , ),p  that is

2 1/ 2

0
(1 )

.
1 cos

(62)

Consequently, Eq. (38) in the Lorentz – invariant form becomes

212
2 2

2 2

(1 )1 1 0,
1 cos

n
cc t

(63)

where  = –1 or +1, as in Eq. (38). Finally, the relativistic expression of the
potential energy of the medium-photon system is the following

21
2 2

(1 )
(1 ) , 1, for plasma,

1 cospU n n (64)

21
2 2

(1 )
( 1) , 1, for dielectric transparent medium.

1 cosdU i n n (65)

The photon propagation through material media (plasma or dielectric) implies
directly (by the equations 20, 26) or indirectly (by the equations 63, 64, 65) the
existence of the photon spin and of mathematical symmetries specific to spin
algebra. The most general definition of the matrix-operator of the spin S  is [22]

1 2 3

0,

.

S S iS

S Ai Bi Ci
(66)

By introducing the expression of the operator S  in the terms of the (A, B, C)
operators in the first equation (66) (expressing the auto – perpendicularity of the
spin) we get the condition

1 2 3{ } { } { } 0,B C C B iA i C A A C iB i A B B A iC i (67)

which should by identically satisfied. From here it results the matrix equations
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0, 0, ,B C C B iA C A A C iB A B B A iC (68)

where
0 0 0 0 0 0 0

0 0 , 0 0 0 , 0 0 .

0 0 0 0 0 0 0

i i

A i B C i

i i

 (69)

Denoting by an accent the matrices transformed by rotation, that is

( ) ( ), ( ) ( ), ( ) ( ),A A B B C C (70)

 being the transposed matrix of the matrix , it comes out the composition
conservation law of the algebra of spin 1, namely

0, 0, 0.B C C B iA C A A C iB A B B A iC (71)

The justification for the use of the matrices (69) for the photon spin (S = 1) is
emphasized by the invariance of the length of the “spin vector” by a spatial rotation
in E3, that is

2 2 2 2 2 21 1( ) ( ) 1.
2 2

A B C A B C (72)

We point out that an expression of the propagation equation of the photon
through a material non-dissipative medium more general than equation (38) can yet
be obtained by the addition of a coupling between the scalar interaction field
( , )S SE H  and the spin S  [23], that is

22 0
2 2

21 0,S
S S

m c qU S E iH
c i cc t

 (73)

4

0

1 1 1 ,S
S S

UE Up p
q cq tUm c

c

4

0

1 1 , ,  the energy operator.S
S

iH U p p
q cUm c

c

In contrast to  of Eq. (38),  of Eq. (73) contains also a field
regularization, has a hermiticity transform ensuring the reality of the fields, and
eliminates the divergences. Here 1 (as in equation 38), v  is the photon

velocity in the medium, S  is the spin vector matrix (in the representation in which
both 2S  and S3 are simultaneously diagonalized matrices),  is the column matrix
of the wave function (of Q-vector type), and U the Lorentz invariant scalar energy
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of interaction between the photon and the propagation medium. The expression of
the spin matrix vector S  is [24]

1 2 3

10 0 0 0
2 2 1 0 0

1 10 0 0 0 0 .
2 2 2 2

0 0 1
10 0 0 0
2 2

i

i iS i i i

i

(74)

The demonstration of the Lorentz invariance of equation (73) can be made
with the help of the method of infinitely slow transforms [23b]. For this purpose,
let us denote by  the spin 1 operator defined by Eq. (17) and by S  the spin 1
operator defined by Eq. (74). The difference between the two definitions resides in
the fact that  has “zero trace”, while S  is built up so that S3 is diagonal with the
elements (+1, 0, –1). The connection between the two definitions is given by the
unitary transform [24]

1 1ˆ ˆ ˆ ˆ ˆ ˆ, , ,S U U U U U U I (75)
where

1 0
2 2

ˆ 0 0 1 .

1 0
2 2

i

U

i

(76)

Denoting by  the wave function in the representation in which S3 is
diagonal, we have

1 ( )
2

,

1 ( )
2

y x
x

y z

z
y x

i

i

   that is ˆ .U (77)

Using the new functions, the equation (26) becomes an obvious quantum
expression where, by contrast to Eq. (72), the diagonalization of S3 is rather
obtained by a rotation in the “spin space” than by a rotation in the real space E3.
Further we have

( ) 0,v S
t

(78)
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so that the condition of null divergence 0  from Eq. (15) now becomes

1 2 31 2 3 1 2
1 1 0,
2 2 2 2

i i
x x x x x

(79)

so that

1 1 1 3 31 2 3 1 2
1 1 1 1Re Im Re Re Im 0
2 2 2 2x x x x x

1 1 1 3 31 2 3 1 1
1 1 1 1Im Re Im Im Re 0.
2 2 2 2x x x x x

This condition should necessarily accompany Eq. (20) in the representation
with diagonal S3, that is

.v S p
i t

(80)

Under these conditions Eq. (73), which is Lorentz invariant and in agreement
with the experiments of Fizeau and Cerenkov [5b], can be considered not only
equivalent with the Helmholtz equation (12), but also equivalent with the limit for
m0  0 of a particle of spin 1 embedded in a combined vectorial and scalar
interaction [23]. The spatial averaging of the scalar interaction becomes
macroscopically manifest by the index of refraction. If the spatial and the temporal
gradients of the refraction index are different from zero, then we must have a
coupling between the photon spin with the photon propagation direction through
the medium, even if the photon rest mass vanishes!

In the spirit of the present paper there were made several aplications in optics
[19–21], in electronics [16, 17, 25], and in nuclear physics [26].

CONCLUDING  REMARKS

The purpose of this study was to describe in quantum terms, through a
specific continuous interaction between a single photon and a homogeneous,
infinite medium (fully ionized plasma or a transparent dielectric) the energy
balance photon – medium during the light travelling, leading to a certain wave
equation for the interacting photon. Although inertial mass and electrical charge are
vanishing physical parameters, to explain the interaction with the surrounding
matter it is necessary to assume a certain photon – medium interaction energy,
macroscopically materialized by the existence of the refractive index and of the
Helmholtz type equation as an adequate tool for controlling the traveling process.
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The nature of the interaction turns out to be of a scalar type, and the photon wave
equation appears as the limiting case, for vanishing rest mass, of a spin 1 particle
submitted to both scalar and vectorial fields.

The ireducible spinor concept is however circumvented, by resorting to the
Q-vectorial (be hexa-vectorial) approach due (independently) to C. G. Bollini
(1961), J. S. Dowker (1966) and Nicholas Ionesco-Pallas (1967) [23].

Acknowledgments. Thanks are due to Nicholas Ionescu-Pallas for over 3 years of usefull
discussions and for his most valuble help regarding the formalism of this paper.

Special thanks are also due to Ioan-Iovitz Popescu for his continuous scientific and moral
support.

APPENDIX
The passage from the electrodynamics (traceless) spin

to the quantum spin (with diagonalized S3)

By a rotation in the 6-dimensional Plucker & Cayley space it is possible to
achieve simultaneously two requirements, namely

– Invariance of the quantity *  and preservation of spin 1 algebra
– Diagonalization of the component S3 (of the quantum spin)
We emphasize the fact that the “spin rotation” does not represent a rotation in

the current sense because it does not imply the time. Specifically, this is achieved
by a special transform (L. Foldy) by which a 4-vector  is decomposed into a
scalar (corresponding to a particle of spin 0) and a spatial vector (corresponding to
a particle of spin 1), while the particle de spin 0 is eliminated [24, 27].

Actually we have to solve the matrix equation

,SU U (A1)

where  is the electrodynamic spin given in (17) and S  is the quantum spin given
in (74). Both these spins satisfy the same algebra

, .i S S iS (A2)

Denoting the transformation matrix between the two kinds of spin by

1 2 3

4 5 6

7 8 9

a a a

U a a a

a a a

(A3)

the equation (A1) offers 9 vectorial equalities that is 27 scalar equalities. The 9
elements of the matrix U can be expressed in terms of a single element which we
take conventionally by a1, so that finally we have
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1 1, 2 1 3

4 5 6 1

7 1 8 1 9

, 0,

0 0 2 ,

, , 0.

a a a ia a

a a a a

a a a ia a

(A4)

The determination of the element a1 can be achieved from the condition of
hermiticity and unitarity of U

2
12 ,U U a I

from where we get 1
1 (cos sin ).
2

a i  For  =  + ,  being an arbitrary

phase, we get the expression (76) of Û  multiplied by the arbitrary phase factor ei .

Fig. 3 – The U matrix diagram, where   is the null element.
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